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1 Introduction

The hypothesis that the universe underwent accelerated expansion during an early infla-

tionary epoch can explain the flatness, isotropy, homogeneity, horizon and undesired relic

problems of the early universe. Typically, inflation is caused by a local Lorentz invariant

energy density dominating the equation of state and driving an exponential expansion of

the comoving Hubble length [1]. Even better, the growth of quantum fluctuations during

inflation allows a simple description of the observed features of the primordial cosmological

fluctuations that are required in the Hot Big Bang to seed the large-scale structure ob-

served in the universe. The general predictions of inflationary scenarios also agree with the

increasingly precise observations of the properties of the Cosmic Microwave Background

(CMB), such as measured most recently by WMAP [2]. While the idea of inflation is

in good qualitative and quantitative agreement with the data, it has so far proven more

difficult to embed inflation within a more complete framework of physics at the very high

energies that are required.

Thus, many inflationary scenarios exist that are constructed to be consistent with the

current experimental constraints. The vast majority of these fall into the category of ‘slow-

roll’ inflation, for which a scalar field (inflaton), classically evolves under the influence of a

very flat potential. It is the approximately constant energy density of the scalar during this

classical slow roll that drives the inflationary epoch. Although some scenarios are more

sophisticated, and have incorporated important quantum effects modifying or generating

the potential, the usage of the semi-classical approximation is standard in inflation studies.
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In this paper, we apply the power counting formalism of effective field theory to study

the question of the size of the loop corrections of the scalars coupled to gravity that are

commonly employed in the inflation literature. Our results are constructed to be as general

as possible, are not limited to one loop, and allow one to directly examine the quantum

corrections of physical quantities (like the classical inflaton potential or scattering cross

sections). The techniques used rely on simple dimensional arguments that are known to

work for similar applications of non-renormalizable theories in non-gravitational situations

(like chiral perturbation theory in the strong interactions). The beauty of the approach is

its simplicity, since the constraints on couplings and masses that underlie the validity of the

semi-classical approximation can be quickly determined using power-counting arguments

without the need for extensive explicit calculation (and yet agrees with these calculations

when they are available).

As an example of the utility of the formalism we develop, we study the unusually

predictive and simple Higgs-Inflaton scenario [3]. In this scenario, it is the Standard Model’s

Higgs boson itself that acts as the inflaton, a scenario that is made possible through the

addition of the single dimension-four interaction, δL = ξH†H R, that is usually neglected,

but that is expected to be required to exist due to renormalization of the theory in curved

space [4]. This term encodes the experimentally untested possibility of a large nonminimal

coupling of the Higgs to gravity, and the freedom to choose the new coupling ξ is all that

is required to ensure an inflationary slow roll.

However, these conclusions are drawn using a semi-classical analysis, and we show that

the domain of validity of this approximation is very narrow for this model due to the large

size of ξ ≃ 104 required for successful inflation (consistent with WMAP constraints). We

find that the semiclassical analysis requires that the scale M , defining the limit of validity

of the effective theory, lies in the narrow window Mp/ξ ≫ M ≫
√

λHMp/ξ, where λH is

the usual quartic self-coupling of the Higgs in the Standard Model potential. We show how

this condition is very sensitive to the existence of other heavy particles in the microscopic

theory that couple to the Higgs, even if these couplings are quite weak. Similar remarks

apply to curvature-squared inflationary models, which also walk a thin line of consistency.

2 Power-counting

Power counting the scales that appear in loops is a standard technique of effective field

theory, for which many excellent reviews exist [5] in the literature, including applications

to gravity [6, 7]. In this section, we use power counting to identify how successive terms in

the semiclassical expansion depend on the various scales and couplings of the inflationary

theory of interest. There are two types of effective field theories normally considered in the

literature for inflation, that differ according to whether or not they focus on the complete

inflaton-metric system [8], or on the specific adiabatic mode which (for single-field models)

controls the spectrum of primordial perturbations [9]. We here consider theories of the

form of [8] (and its multi-scalar generalizations), and provide a power-counting analysis of

the order in the low-energy expansion at which any effective interaction contributes.
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2.1 The effective field theory

For definiteness, consider the following effective lagrangian, describing the low-energy in-

teractions of N dimensionless scalar fields, θi, and the metric, gµν :

− Leff√−g
= v4V (θ) +

M2
p

2
gµν
[

W (θ)Rµν + Gij(θ) ∂µθi∂νθ
j
]

(2.1)

+A(θ)(∂θ)4 + B(θ)R2 + C(θ)R (∂θ)2 +
E(θ)

M2
(∂θ)6 +

F (θ)

M2
R3 + · · · .

Here the lagrangian is organized as a derivative expansion, with terms involving up to two

derivatives written explicitly and the rest only written schematically in order to sketch the

dimension of the coefficients. In particular R3 collectively represents all possible indepen-

dent invariants constructed from three Riemann tensors, or two Riemann tensors and two

of its covariant derivatives; R(∂θ)2 denotes all possible invariants involving one power of

the Riemann tensor and two derivatives acting on θi; and so on for the other terms.

In eq. (2.1) the scalar fields are normalized so that the coefficient of their kinetic terms

is the reduced Planck mass, defined in terms of Newton’s constant by1 Mp = (8πG)−1/2.

All of the coefficient functions, V (θ), Gij(θ), A(θ) and so on, are dimensionless, and the

scale M that makes up the dimensions is taken to be characteristic of whatever underlying

microscopic physics has been integrated out.2 Since it is the smallest mass that dominates

in such a denominator, it is important to recognize that generically M ≪ Mp [6]. In

applications to inflation our interest is usually (but not always) in situations where V ≃
v4 ≪ M4 when θ ≃ O(1).

For the purposes of estimating the size of quantum effects, we expand about a classi-

cal solution,

θi(x) = ϑi(x) +
φi(x)

Mp
and gµν(x) = ĝµν(x) +

hµν(x)

Mp
, (2.2)

which allows the effective action, eq. (2.1), to be written as a sum of effective interactions

Leff = L̂eff + M2M2
p

∑

n

cn

Mdn
On

(

φ

Mp
,
hµν

Mp

)

(2.3)

where L̂eff = Leff(ϑ, ĝµν) is the lagrangian density evaluated at the background configura-

tion. The sum over n runs over the labels for a complete set of interactions, On, each of

which involves Nn = N
(φ)
n + N

(h)
n ≥ 2 powers of the fields φi and hµν . (Nn 6= 1 follows as

a consequence of the background field equations for ϑi and ĝµν .) The parameter dn counts

the number of derivatives appearing in On, and so the factor M−dn is what is required to

keep the coefficients, cn, dimensionless. The overall prefactor, M2M2
p , is chosen so that

the kinetic terms — i.e. those terms in the sum for which dn = Nn = 2 — are M and Mp

independent. Notice also that the operators On depend implicitly on the properties of the

classical backgrounds, ϑi and ĝµν , about which the expansion is performed.

1This normalization is convenient for large-field inflationary models, for which the scalars move over

Planckian distances in field space, but we also consider scalars whose couplings are stronger than Planck-

suppressed in what follows below by including couplings that carry compensating powers of Mp.
2That is, M might be regarded as the lightest of the particles that were integrated out to produce the

low-energy theory. Our calculations below show why such a mass would appear in this way.
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Comparing eqs. (2.1) and (2.3) also shows that there are factors of the scales v, M

and Mp buried in the dimensionless coefficients cn. In particular, any term involving no

derivatives comes from the scalar potential, V (θ), and so

cn =

(

v4

M2M2
p

)

λn (if dn = 0) , (2.4)

where the λn represent dimensionless couplings that are independent of Mp and M . Simi-

larly, the absence of Mp in all of the terms involving more than two derivatives in eq. (2.1)

implies

cn =

(

M2

M2
p

)

gn (if dn > 2) , (2.5)

where gn is similarly independent of M and Mp.

In terms of the λn’s the scalar potential has the schematic form

V (φ) = v4

[

λ0 + λ2

(

φ

Mp

)2

+ λ4

(

φ

Mp

)4

+ · · ·
]

, (2.6)

which shows that the natural scale for the scalar masses under the above assumptions is

m ≃ v2/Mp. The quartic coupling constant, λ4(v/Mp)
4, is similarly Planck suppressed.

Such small masses and couplings follow from the assumption that V only runs through a

range of order v4 as φ runs all the way out to Mp. Although such a shallow potential often

arises in inflationary applications, in some circumstances it is also interesting to consider

potentials for which V ∼ v4 when φ runs over a comparable range, φ ∼ v, and so for which

m ≃ v up to dimensionless couplings. Such potentials can be included in the above analysis

by further redefining

λn =

(

Mp

v

)Ňn

λ̌n , (2.7)

in the power-counting rules that are to follow. Here Ňn ≤ Nn denotes the number of scalar

fields of this type appearing in the vertex in question. This need not agree with Nn if there

are also other scalars, or graviton vertices, appearing in the dn = 0 vertex of interest.

2.2 Semiclassical perturbation theory

Our goal is to follow how the couplings cn and the scales M and Mp appear in physical

quantities at various orders of the semiclassical expansion. To this end we divide Leff into

an unperturbed and perturbed lagrangian density,

Leff =
(

L̂eff + L0

)

+ Lint , (2.8)

where L0 consists of those terms in Leff for which Nn = 2 and dn ≤ 2. Since the path

integral over φi and hµν is Gaussian in the absence of Lint we can define the semiclassical

expansion in principle by computing the generator, Γ, of 1-particle irreducible (1PI) graphs

perturbatively in Lint. This is a semiclassical expansion because the leading contribution

is the classical result

Γ[θ, gµν ] =

∫

d4x Leff(θ, gµν) + · · · . (2.9)

– 4 –
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The key issue is to identify what the small quantity is that makes such an expansion a

good approximation. To determine this, imagine now computing a contribution to Γ coming

from a Feynman graph involving E external lines. The propagators, G(x, y), associated with

each of the I internal lines in this graph come from inverting the differential operator that

is defined by the term L0. The important thing about these for the present purposes is that

they do not depend on M and Mp, although they can depend on scales (like the Hubble

scale, H) that appear in the background configurations, ϑi and ĝµν .

Similarly, vertices in this graph all come from terms in Lint, and so each time the

interaction On contributes a vertex to the graph it comes with a factor of cnM2−Nn
p M2−dn .

If the graph contains a total of Vn such vertices it acquires in this way a factor

∏

n

[

cnM2−Nn
p M2−dn

]Vn

= M2−2L−E
p

∏

n

[

cnM2−dn

]Vn

, (2.10)

where the equality uses the identity

2I + E =
∑

n

NnVn (2.11)

that expresses that the end of each line in the graph must occur at a vertex, as well as the

definition,

L = 1 + I −
∑

n

Vn , (2.12)

of the number of loops, L, of the graph.

Power-counting. The relative contribution of each graph to Γ is then simplest to enu-

merate using dimensional arguments. However any such argument is complicated by the

ultraviolet divergences that arise in the integration over the positions, x, of the vertices;

divergences that may be traced to the singularities in the propagators, G(x, y), in the coin-

cidence limit y → x. For the purposes of making the dimensional argument it is therefore

simplest to regularize these divergences using dimensional regularization, since in this case

all of the dimensions of the various integrations is set by a physical scale appearing in the

problem (such as the masses of the fields φi, or a scale like H characterizing the size of a

derivative of the background classical configuration).3

Suppose now that E denotes the largest of the physical scales that appear explicitly

in the propagators or vertices of the calculation. Then to leading approximation we can

neglect any other, smaller, scales compared with E when estimating the size of a particular

Feynman graph. Since the contributions to Γ all share the same dimension as the initial

3Naively, using a cutoff to regulate these divergences would seem to change the estimates we are about to

make. However the cutoff-dependent estimates found in this way are guaranteed to cancel cutoff-dependent

counter-terms once the theory is renormalized, since physical quantities cannot depend on how we choose

to arbitrarily regulate a graph. What counts physically is how observables depend on observable (or

renormalized) quantities, and using a cutoff regularization simply makes it difficult to follow dimensional

analysis through intermediate steps of the calculation. Of course the final answer does not depend on how

the calculation is performed, and any strong dependence on a cutoff in the regularized theory shows up in

dimensional regularization as a dependence on a large physical scale in the problem, such as the mass of a

heavy particle that has been integrated out.

– 5 –



J
H
E
P
0
9
(
2
0
0
9
)
1
0
3

lagrangian density Leff , the contribution of a graph involving E external lines, L loops and

Vn vertices involving dn derivatives becomes4

AE(E) ≃ E2M2
p

(

1

Mp

)E ( E

4π Mp

)2L
∏

n

[

cn

(

E

M

)dn−2
]Vn

. (2.13)

The factors of 4π in this expression come from standard arguments. (For example, for a

flat background with constant ϑi, they arise from the loop-integral measure in momentum

space,
∫

d4p/(2π)4, once the angular integration over the momentum direction is taken

into account.)

Keeping in mind the factors of M and Mp that are hidden in some of the cn’s — c.f.

eqs. (2.4) and (2.5) — it is useful to write separately the terms with dn = 0 and dn = 2 in

the product, to get

AE(E) ≃ E2M2
p

(

1

Mp

)E ( E

4π Mp

)2L
∏

dn=2

(

cn

)Vn

(2.14)

×
∏

dn=0

[

λn

(

v4

E2M2
p

)]Vn
∏

dn≥4

[

gn

(

E

Mp

)2( E

M

)dn−4
]Vn

.

Eq. (2.14) is the main result of this section. It shows in particular what combination

of scales must be small in order to justify the validity of the perturbative expansion.

A generic sufficient condition for successive insertions of interactions to be smaller than

preceding ones is to have E be sufficiently small,

E

4πMp
≪ 1 , (2.15)

and

gn

(

E

Mp

)2( E

M

)dn−4

≪ 1 (for dn ≥ 4) . (2.16)

Repeated insertions of two-derivative interactions do not generically generate large

contributions provided

cn ≪ 1 (for dn = 2) , (2.17)

although having cn ≃ O(1) need not cause problems if symmetries strongly constrain

the kinds of interactions of this kind that can arise. For example, for pure gravity only

the Einstein-Hilbert action itself has two derivatives, for which all the resulting graviton

interactions have cn’s of order one. The lack of suppression of these interactions shows that

they are all generically equally important in a given low-energy process.5

4For simple backgrounds these calculations can be made in momentum space (although the dimensional

argument being made does not require this), and when this is done the reader should note that eq. (2.13)

pulls out the standard overall momentum-conserving factor, (2π)4 δ4(q), from AE(E), where q denotes the

total 4-momentum flowing into the graph.
5That is, although the low-energy expansion controls higher derivatives, for generic relativistic appli-

cations in General Relativity one must work to all orders in the expansion of the metric about a given

background, gµν = gµν + hµν .

– 6 –
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Finally, the only place where inverse powers of E arise is associated with no-derivative

interactions, and a-priori these seem like they could be dangerous in a low-energy expan-

sion since

λn

(

v4

E2M2
p

)

≪ 1 (for dn = 0) (2.18)

might not be satisfied. This would be even more worrisome in the event that the potential

has the form V = v4f(φ/v) for some order-one function f(x), since in this case we have

seen — c.f. eq. (2.7) — that we must take λn = (Mp/v)Ňn λ̌n for vertices involving these

scalars. Although it is true that low-energy is not itself sufficient to suppress these inter-

actions, their presence need not destroy the low-energy approximation due to correlations

that the topology of a graph imposes amongst the numbers of loops, the number of vertices

and the number of external lines, as we now see.

For example, imagine the potential worst-case scenario for the low-energy expansion

where all of the vertices of the Feynman graph have dn = 0 and Ňn = Nn (i.e. only involve

the largest and most dangerous couplings). In this case the identities (2.11) and (2.12) hold

separately for the internal lines and vertices involving only the dangerous scalar, and so

∑

n

(Ňn − 2)V̌n = Ě − 2 + 2L , (2.19)

leading to

AĚ(E) ≃ E2M2
p

(

1

Mp

)Ě ( E

4π Mp

)2L
∏

dn=0

[

λ̌n

(

Mp

v

)Ňn
(

v4

E2M2
p

)

]V̌n

≃ E2v2

(

1

v

)Ě ( E

4π v

)2L
∏

dn=0

[

λ̌n

(

v2

E2

)]V̌n

. (2.20)

Clearly all powers of Mp have dropped out in this expression and, as we see in more detail

below, provided φ ≃ E the net power of E/v that appears in Γ is then

(

E

v

)2+Ě+2L−
P

n 2V̌n

=

(

E

v

)4+
P

n(Ňn−4)V̌n

, (2.21)

which uses eq. (2.19) once more. This shows that quintic and higher interactions generate

only positive powers of E/v, while quartic interactions are neither enhanced nor suppressed

by E/v (and so must be controlled purely by the small size of the relevant dimensionless

couplings, λ̌n).

Since there are no interactions with Nn = 1 (by virtue of the background field equa-

tions) or Nn = 2 (as these are ‘mass’ terms in the unperturbed lagrangian density), only the

super-renormalizable cubic terms with Nn = 3 are potentially dangerous to the low-energy

expansion (unless their dimensionless coefficients are also suppressed so that λ̌3 ≃ O(E/v)).

Such trilinear vertices can indeed cause trouble for the low-energy expansion, if they are

of order λ3v
4(φ/Mp)

3 ≃ λ̌3v φ3, since v need not be small compared with the low-energy

scales, E, to which the effective theory is applied.

– 7 –
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2.3 Examples

Eq. (2.14) has a number of interesting special cases.

Pure gravity with no cosmological constant. The only thing in the above arguments

to change in the case of pure gravity (i.e. no scalar fields) in the absence of a cosmological

constant is the absence of interactions having dn = 0. In this case eq. (2.14) reproduces the

standard result for General Relativity [6]. It predicts, in particular, that for any E the dom-

inant contributions arise for L = 0 with only vertices satisfying dn = 2 included. For pure

gravity these graphs amount to working with General Relativity in the purely classical limit.

The first sub-leading contributions may be similarly found, and correspond to working with

General Relativity at one loop (i.e. with L = 1 and Vn = 0 unless dn = 2), or working

at classical level and allowing precisely one insertion from a curvature-squared interaction

(i.e. with L = 0 and Vn = 0 for dn > 4, Vn = 1 for dn = 4 and Vn arbitrary if dn = 2).

Integrating out a particle of mass m ≪ M . Another application specializes to the

case where the largest scale in the amplitude is the mass, m, of a particle that is being inte-

grated out. In this case provided all other scales are much smaller than m the result for the

Γ is local, and expression (2.13) or (2.14) can be regarded as describing how effective inter-

actions are renormalized in Leff due to the removal of this particle. More quantitatively, if

V (θ) = v4
[

λ0 + λ2θ
2 + λ4θ

4 + · · ·
]

= v4 λ0 +
λ2v

4

M2
p

φ2 +
λ4v

4

M4
p

φ4 + · · · , (2.22)

with all λn’s being of order unity, then the masses of the θi particles are of order m ≃ v2/Mp.

To make one particle systematically heavy relative to the others, we either require λ2 ≫ 1

for the heavy field (as above, where λ2 = (Mp/v)2λ̌2, say) or λ2 ≪ 1 for all of the others.

Since the largest scale in the Feynman graphs is m by assumption, we may use the

above power-counting estimates with E ≃ m. Furthermore, if we focus on contributions to

AE that involve precisely D derivatives, denoted AD
E , then the same dimensional arguments

as above predict the following scaling:

AD
E ≃ m2M2

p

(

∂

m

)D ( 1

Mp

)E ( m

4π Mp

)2L
∏

n

[

cn

(m

M

)dn−2
]Vn

≃ m2M2
p

(

∂

m

)D ( 1

Mp

)E ( m

4π Mp

)2L
∏

dn=2

(

cn

)Vn

(2.23)

×
∏

dn=0

[

λn

(

v4

m2M2
p

)]Vn
∏

dn≥4

[

gn

(

m

Mp

)2
(m

M

)dn−4
]Vn

.

Comparing this with the coefficients of the effective interaction valid below the scale

m, defined using the form of eq. (2.3) (but with M replaced by m)

L̃eff = L̂eff + m2M2
p

∑

n

c̃n

md̃n

On

(

φ

Mp
,
hµν

Mp

)

, (2.24)

– 8 –
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we see the Feynman graph in question contributes

δc̃n ≃
(

m

4π Mp

)2L
∏

n

[

cn

(m

M

)dn−2
]Vn

. (2.25)

In terms of the m- and Mp-independent, dimensionless couplings, λ̃n, g̃n, λn and gn,

these become

δλ̃n ≃
(

m2M2
p

v4

)

(

m

4π Mp

)2L
∏

dn=2

(

cn

)Vn∏

dn=0

[

λn

(

v4

m2M2
p

)]Vn
∏

dn≥4

[

gn

(

m

Mp

)2
(m

M

)dn−4
]Vn

(2.26)

while for d̃n ≥ 4 we instead have

δg̃n ≃
(

M2
p

m2

)

(

m

4π Mp

)2L
∏

dn=2

(

cn

)Vn∏

dn=0

[

λn

(

v4

m2M2
p

)]Vn
∏

dn≥4

[

gn

(

m

Mp

)2
(m

M

)dn−4
]Vn

.

(2.27)

For example, at tree level (L = 0) the corrections to couplings in the scalar potential

(d̃n = 0) are of order

δλ̃n ≃
(

m2M2
p

v4

)

∏

n

[

λn

(

v4

m2M2
p

)]Vn

, (2.28)

because at tree level only dn = 0 vertices can contribute to an effective interaction having

d̃n = 0. Expanding this tree-level result in graphs involving one, two and more vertices

then gives6

λ̃n ≃ λn +

(

v4

m2M2
p

)

∑

graphs

kmn λnλm + · · · , (2.29)

where kmn are calculable coefficients and the sum is over graphs for which dn = dm = 0

and Nn + Nm = Ñn + 2. The ellipses indicate tree level graphs involving three or more

vertices. Similarly, one-loop graphs involving only one vertex contribute (for d̃n = 0),

δλ̃n ≃ 1

(4π)2

∑

n

{

rncn

(

m4

v4

)

+
m2

M2
p

[

snλn + tngn

(

m4

v4

)

(m

M

)dn−4
]}

, (2.30)

where rn, sn and tn are calculable, and so on.

Notice that if m ≃ v2/Mp then m/Mp ≃ (v/Mp)
2 ≪ m/v ≃ v/Mp ≪ 1, and m2M2

p ≃
v4. This implies no suppression by scales between the terms in eq. (2.29), while in eq. (2.30)

it makes the sums involving cn and λn of the same order as one another, but larger than

those involving gn. On the other hand, if m is dialled up to m ≃ v, such as by taking

λn ≃ (Mp/v)Nn for some vertices in the scalar potential, then the factor in eq. (2.29)

becomes (v4/m2M2
p )(Mp/v)Nm+Nn−Ñn = (v2/M2

p )(Mp/v)Nm+Nn−Ñn = O(1). In the loop

expression, however, it is the λn term that dominates (unsuppressed by powers of v/Mp) for

corrections to the (Mp/v)-enhanced couplings, while the cn and λn terms compete (again

unsuppressed by v/Mp) for the corrections to the generic λn’s. In all cases the gn coupling

is subdominant.
6Notice that one-particle reducible graphs are allowed to contribute to the low-energy effective action,

which is only required to be irreducible with respect to the cutting of light particle lines.
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3 Applications to inflation

In applications to slow-roll inflation the background fields are time-dependent, and so

among the important scales in the problem are the characteristic times over which the

various fields vary appreciably. For the metric this is given by the Hubble scale

H =
ȧ

a
≃

√
V

Mp
≃ v2

Mp
, (3.1)

while the evolution of the inflationary scalar is similarly characterized by the scale

µφ =
φ̇

φ
. (3.2)

During slow-roll inflation the scales µφ and H are related to one another by the slow-roll

conditions, which state that the inflaton time derivative satisfies

φ̇ ≃ V ′

H
≃ MpV

′

√
V

≃
√

ǫV ≃
√

ǫ v2 . (3.3)

Here

ǫ =
1

2

(

MpV
′

V

)2

and η =
M2

p V ′′

V
, (3.4)

are the two slow-roll parameters [10], where the derivatives are taken with respect to the

canonically normalized fields. They arise because a necessary condition for a slow roll is

that both must be small: ǫ, |η| ≪ 1. Eq. (3.3) implies that during a slow roll the relative

size of H and µφ, depends on the size of φ, with

µφ =
φ̇

φ
≃

√
ǫ v2

Mp
≃

√
ǫH if φ ≃ Mp , µφ =

φ̇

φ
≃

√
ǫ v if φ ≃ v . (3.5)

The observation that the inflaton-gravity action is a part of the more general effective

lagrangian, eq. (2.1), imposes often unspoken conditions on the domain of validity of any

analysis that bases inflation on its classical solutions. It requires in particular that the

inflationary motion must be adiabatic, which puts an upper limit on the inflationary time-

scales: µφ,H ≪ M . Indeed, regarding the effective theory as a derivative expansion

breaks down if H,µφ ≃ M , because then terms involving powers of R/M2 ≃ (H/M)2 or

(∂θ)2/M2 ≃ (µφ/M)2 are not small.

For many inflationary models there is an important constraint that restricts the free-

dom to choose H and µφ arbitrarily. This constraint arises when primordial fluctuations

are regarded as arising as quantum fluctuations of the inflaton during inflation. Agreement

with the observed temperature fluctuations in the CMB requires the amplitude of curva-

ture perturbations to have a specific amplitude ∆2
R|k⋆ = 2.445 ± 0.096 × 10−9 [2], where

k⋆ = 0.002Mpc−1.

When these perturbations are generated by quantum fluctuations in φ, then the quan-

tity that controls their amplitude is δ = H2/φ̇ = (24π2∆2
R|k⋆)1/2, and so using the above

estimates for φ̇ and H gives

δ ≃ 1√
ǫ

(

v

Mp

)2

≃ 7 × 10−4 . (3.6)

This provides the important relationship v/Mp ≃ 0.03 ǫ1/4.
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3.1 Corrections to inflationary scenaria

Eq. (2.14) allows an estimate of how the various effective interactions contribute to an

inflationary scenario, provided E is chosen to be the largest scale in the problem.

Classical effects from higher effective interactions. The first modification to con-

sider is the contribution of the various effective interactions in eq. (2.1) to the classical

equations of motion. In the language of the estimate (2.14) this amounts to asking the

relative size of various contributions in the classical limit (i.e. when L = 0). Eq. (2.14)

shows that (provided gn . O(1)) higher-derivative interactions with dn ≥ 4 are suppressed

by at least two powers of E/Mp, plus additional powers of E/M if dn > 4. On the other

hand, interactions with dn = 2 are not particularly suppressed, and generically neither are

interactions from the scalar potential. These two quantities must therefore be included

exactly into the classical calculation. In particular, it is often a bad approximation to work

in the small-field limit that is implicit when expanding the potential in powers of φ, and

neglecting terms beyond a particular power (like quartic) when in the inflationary regime,

as has recently been re-emphasized within the context of string theory [11].

Quantum contributions. A second question asks about the size of quantum corrections

to the classical approximation. The size of these effects depends crucially on how massive

are the particles whose quantum fluctuations are under study. In all cases eq. (2.14) applies

(or (2.20) if the natural scale for φ is φ ≃ v rather than φ ≃ Mp), with E ≃ m for quantum

fluctuations from particles whose mass satisfies m ≫ µφ, H, while E ≃ max(µφ,H) for the

quantum effects of particles satisfying m ≪ µφ, H.

Heavy particles: the limit E ≃ m ≫ H ≃ v2/Mp leads to the estimates of section 2.3,

with the additional information that v4/(E2M2
p ) ≃ v4/(m2M2

p ) ≃ H2/m2 ≪ 1. This shows

that in addition to the generic loop factor (m/4πMp)
2, the dn ≥ 4 interactions — gn —

are further suppressed by at least two powers of m2/M2
p , and interactions in the scalar

potential — λn — are additionally suppressed by powers of H2/m2. Only the dn = 2

interactions — cn — remain unsuppressed beyond the basic loop factor if λn . O(1). On

the other hand, if there are interactions in the scalar potential that are unsuppressed by

powers of Mp (such as if λn ≃ (Mp/v)Nn λ̌n, as discussed above) then loops involving these

interactions can also modify the inflaton mass in a dangerous way [13].

Provided the heavy field itself only moves adiabatically, the implications of loop effects

of this type are most simply seen by integrating the particle out, leading again to an effective

theory of the form of eq. (2.1), but with M replaced by m [12–15]. As we have seen, only

those interactions having two or fewer derivatives generically have an appreciable influence

on the classical equations, since the effects of interactions with dn ≥ 4 have been argued

already to be small. In general, quantum corrections can change the shape of the classical

potential, and such changes can ruin the inflationary slow roll of the original potential unless

they are absorbed into the coefficients of the coefficients of the original effective action.

This is particularly true when φ arises in the scalar potential V suppressed by a light scale

like v rather than Mp. This simply represents the usual naturalness problems in keeping

low-dimension terms in the scalar potential small as heavier particles are integrated out.7

7Approximate symmetries, such as shift symmetries [16], can protect the size of such corrections, al-
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Unfortunately, although these corrections need not be small, and can undermine

whether or not we believe a given theory actually exhibits inflation in the first place,

they do not have observable implications in the sense that cosmological observations are

unable to separate quantum from classical contributions to the potential. On the other

hand, if the heavy-field motion is not adiabatic, it need not decouple and so cannot be

integrated out. In this case its presence can generate observable deviations from standard

inflationary predictions [17].

Light particles: the analysis is different when the mass of the particle in the loop is

small compared with H and µφ, which includes in particular the inflaton itself since its

mass is m2 = V ′′ = ηV/M2
p ≃ η v4/M2

p ≃ ηH2 ≪ H2. In this case the estimate (2.14) still

applies, but it is E ≃ H (since µφ ≃ √
ǫH ≪ H in this case) that should be used.

Specializing eq. (2.14) to E ≃ H then gives

AE(E) ≃ H2M2
p

(

1

Mp

)E ( H

4π Mp

)2L
∏

dn=2

(

cn

)Vn

(3.7)

×
∏

dn=0

(

λn

)Vn ∏

dn≥4

[

gn

(

H

Mp

)2(H

M

)dn−4
]Vn

,

where λn . O(1) provided V/v4 varies appreciably only when φ changes by an amount of

order Mp. This shows the irrelevance of the gn terms (having 4 or more derivatives), as

well as the lack of additional suppression of the dn = 2 and dn = 0 interactions, beyond

the basic loop-suppression factor.

To apply this to the one-loop inflaton fluctuations themselves, 〈φ2〉, recall that the

quartic interaction in the scalar potential is λ4v
4(φ/Mp)

4 ≃ λ4(H/Mp)
2φ4. The one-loop

graph involving this vertex contributes an amount of order λ4(H/Mp)
2〈φ2〉 to the 2-point

function, which can be compared with eq. (3.7) specialized to E = 2 to read off the size of

〈φ2〉. This gives the estimate

〈φ2〉 ≃
(

H

4π

)2

, (3.8)

in agreement with the standard calculations. Indeed it is this connection between 〈φ2〉 and

H2 that is responsible for the numerator of the observable combination δ = H2/φ̇ discussed

earlier. (The φ̇ comes from the requirement that the φ fluctuation mix with the metric to

generate a curvature fluctuation that can be observed in the CMB.)

3.2 Applications

As an example of the utility of these power-counting estimates we apply the above rea-

soning to identify the domain of validity of semiclassical methods in two closely related

inflationary models.

though it is important that these symmetries apply to all couplings of the inflaton and not just to the

self-couplings that appear in the inflaton potential.
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3.2.1 Higgs inflation

Using this formalism, we now consider the example of Higgs inflation [3] that has recently

gained some attention [18, 19]. This model starts with the very economical proposal to try

to obtain inflation using the Standard Model Higgs as the inflaton. The idea is to do so

by supplementing the Standard Model and Einstein-Hilbert lagrangian densities with the

sole dimension-4 interaction that is not normally written down:8

LH inf = LSM + LEH + ξ H†HR , (3.9)

where H is the usual Standard Model doublet
√

2H = (0, vH +h)T , and ξ is a dimensionless

coupling. In particular, the Higgs potential is the usual quartic form,

V = λH

(

H†H− v2
H

2

)2

=
λH

4

(

2 vHh + h2
)2

, (3.10)

where λH is related to the Higgs boson mass by m2
H

≃ 2λHv2
H
. Because the rest of the

action is completely determined by non-inflationary physics, the only adjustable parameter

with which to try to make the model inflate is ξ.

Once one performs a Weyl rescaling to transform to the Einstein frame the Higgs

potential becomes

VEF ≃ λH(H†H− v2
H/2)2

(1 + ξ H†H/M2
p )2

, (3.11)

which is to be regarded as being a function of h(φ), where φ is the field that canonically

normalizes the Einstein-frame Higgs kinetic term. Remarkably, this can be flat enough to

inflate, provided that there is a reliable regime for which H†H ≫ v2
H and ξH†H ≫ M2

p ,

since in this case VEF ≃ λHM4
p /ξ2 is approximately constant.

More precisely, expressing the potential in terms of the canonical variable in the infla-

tionary regime gives

VEF ≃
λHM4

p

ξ2

[

1 + Ae−aφ/Mp

]−2
, (3.12)

where A and a are dimensionless numbers. The inflationary regime of interest is then

φ ≫ Mp, since in this case [1 + Ae−ax]−2 ≃ 1 − 2Ae−ax + · · · is approximately constant.

Dropping O(1) constants, this shows that the energy density during inflation is V ≃ v4

where v2 ≃
√

λHM2
p /ξ, and so the Hubble scale during inflation is H ≃ v2/Mp ≃

√
λHMp/ξ.

Computing the value of the slow-roll parameters at horizon exit and demanding δ ≃ 7×10−4

then shows that the amplitude of primordial fluctuations agrees with observations provided

ξ ≃ 5 × 104
√

λH ≃ 5 × 104

(

mH√
2 vH

)

≫ 1 , (3.13)

where mH > 115 GeV and vH = 246 GeV respectively denote the mass and expectation

value of the Higgs [3].

8Earlier examinations of non-minimally coupled models include [20].
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The large size of the coupling ξ is unusual from the particle physics perspective, and

leads one to worry about whether multiple insertions of the corresponding effective inter-

actions might generate unexpectedly large quantum effects. This is the kind of question for

which the above power-counting arguments are well suited. Although the size of some loop

effects were examined in refs. [18, 19], the generality of the power-counting result given

earlier allows the effects of couplings to be identified systematically.

Since the Einstein-frame potential energy varies by of order v4 when φ ranges through

the range Mp the power-counting result, eq. (2.14), may be directly applied. In particular,

it can be used to put an upper bound on the energy scale, M , at which the low-energy

effective description must break down. This is most easily done by studying energetic

graviton-Higgs scattering, gh → gh, or Higgs-Higgs scattering, hh → hh, in flat space, and

asking when this saturates the unitarity bound as a function of the loop order L. For this

purpose we may apply eq. (2.14) to the scattering amplitude, taking E to be the center-

of-mass energy of the scattering. Furthermore, because we expand about flat space and

small Higgs vev we may regard the interaction ξH†HR as an interaction vertex involving

dn = 2 derivatives.

To obtain the bound we concentrate on the potentially most dangerous graphs that

involve only the coupling ξ. According to eq. (2.14), an L-loop graph of this type that

involves Vn insertions of the ξ coupling constant contributes to the (E = 4)-point amplitude

an amount

A4(E) ≃
(

E

Mp

)2( E

4π Mp

)2L
∏

n

ξVn , (3.14)

where the product is over the power, Nn, of the fields h and hµν = gµν − ηµν appearing in

the expansion of the original interaction ξH†HR.

By virtue of the identity, eq. (2.19), the quantities Vn and Nn are related to L and

E = 4 by
∑

n(Nn − 2)Vn = E − 2 + 2L = 2 + 2L, and so the largest power of ξ at any fixed

loop order arises from multiple insertions of the Nn = 3 vertex, in which case Vmax = 2+2L.

The highest power of ξ appearing at any fixed order in L then becomes

Amax
4 (E) ≃

(

ξE

Mp

)2( ξE

4π Mp

)2L

. (3.15)

At tree level this gives A4,tree ∝ ξ2, corresponding to the scattering graph involving two

trilinear h − h − hµν vertices. (Notice that for graviton-Higgs scattering this is a stronger

dependence than the linear dependence in ξ coming from the naive graph involving no

internal lines at all, that uses the quartic h − h − hµν − hλρ vertex, demonstrating the

utility of the power counting analysis.)

Demanding that the cross section built from a term like this not saturate the unitarity

bound, σ ∝ 1/E2, gives a ξ-dependent upper bound on how large E can sensibly be within

the low-energy theory, leading to

E < Emax ≃ Mp

ξ
. (3.16)

For Higgs-Higgs scattering through graviton exchange this power-counting estimate repro-

duces the results of an explicit calculation [21], with the O(1) numerical factor not written
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explicitly in eq. (3.16) revealed to be
√

π/6. This provides a quantitative upper bound on

the true cut off of the theory.

Eq. (3.16) is useful because it furnishes an upper bound as to how big the scale M

can be that controls the size of higher-derivative terms in the low-energy effective theory.9

Some new physics must intervene at a scale M < Mp/ξ, so long as the more microscopic

underlying physics whose low-energy sector the effective theory captures is itself unitary.

Because the Hubble scale is H ≃
√

λHMp/ξ in this picture, the identification M . Mp/ξ

implies H/M &
√

λH . This leaves only the narrow window 1 ≫ H/M ≫
√

λH within

which all approximations remain valid.10

This window gets more uncomfortable the more the new physics couples to the Higgs

field, since we’ve seen that the approximately constant inflationary potential relies on

there being a regime for which V ∝ (H†H)2 and the non-minimal coupling to gravity

is fR with f ∝ H†H. Although this is the case for quartic V and quadratic f when

H†H ≫ M2
p /ξ ≫ v2

H , it need no longer remain so once terms of order δV ∝ (H†H)3 or

δf ∝ (H†H)2 (or higher) are generated by loops. Furthermore, as is seen from eqs. (2.29)

and (2.30), these corrections generically need not be small.

For instance, a quartic coupling of the form gH†Hχ†χ between the Higgs and a heavy

field χ having mass Mχ cannot be forbidden by any internal symmetries and would generate

loop contributions δV ≃ g3(H†H)3/(4πMχ)2 and δf ≃ g2(H†H)2/(4πMχ)2. The quartic

term in V can only dominate if g3H†H/(4πMχ)2 ≪ λH and similarly the quadratic term

in f dominates if g2H†H/(4πM2
χ) ≪ ξ. Using H†H ≫ M2

p /ξ in these conditions shows

that the scale, Λ, suppressing higher powers of the Higgs field must satisfy Λ ≃ 4πMχ/g ≫
Mp

√

g/(λHξ) (for V ) and Λ ≫ Mp/ξ (for f). For g ≃ λH the first of these shows —

not surprisingly — that Λ must be greater than the typical size of the Higgs field during

inflation, Λ ≫ Mp/
√

ξ. The second shows that this bound does not get worse than Λ ≫
Mp/ξ, even if g/λH should be smaller than 1/ξ. That is,

Λ ≫ Mp

√

g

λHξ
(if g > λH/ξ) or Λ ≫ Mp

ξ
(if g < λH/ξ). (3.17)

On the other hand, within this model it is the same mass scale, Mχ, that ultimately

suppresses generic higher-derivative terms in the effective action, since higher-curvature

terms are also generated at one loop of the form R3/(4πMχ)2. We see that the quantity

M in the effective theory obtained by integrating out χ is of order M ≃ 4πMχ, and so

unitarity requires 4πMχ ≪ Mp/ξ, or

Λ ≪ Mp

gξ
. (3.18)

Consider now the separate cases g < λH/ξ and g > λH/ξ. If g > λH/ξ then conditions

(3.17) and (3.18) together require 1/(gξ) ≫
√

g/(λHξ), or g3 ≪ λH/ξ < g. On the other

9Notice that this upper bound for M is parametrically smaller than the value Mp/
√

ξ sometimes found

in the literature. We believe this misidentification of the unitarity bound in the literature is due to not

basing it on the strongest possible dependence on ξ.
10It should be remarked that λH ≃ 0.03 λH0 can be smaller than the value λH0 relevant for Higgs physics

at the LHC once it is run up to the large energies relevant to inflation [19], leading to
√

λH ≃ 0.2
√

λH0.
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hand, if g < λH/ξ then (3.17) and (3.18) together simply require g ≪ 1. We see explicitly in

this example how any other particles must be kept very heavy and/or strongly sequestered

from the Higgs in order for the inflationary mechanism to be viable.11

3.2.2 Inflation from curvature-squared terms

As our second application we next examine inflationary proposals that are based on higher-

curvature interactions [22], which represent a variation on the above theme. Consider to

this end the curvature-squared action

L =
√−g

[

−
M2

p

2
R + ζ R2

]

. (3.19)

The Hubble scale can be most easily identified by exploiting the relationship between

this theory and the Higgs-Inflation theory. This can be made clear by rewriting the R2

Lagrangian as a scalar-tensor model by performing a Hubbard-Stratonovich transformation

and ‘integrating in’ a scalar field of dimension one Φ, as in

L =
√−g

[

−
M2

p

2
R − 2α Φ2 R − Φ4

]

. (3.20)

Performing the gaussian integral over Φ returns the lagrangian density of eq. (3.19),

with ζ = α2.

The relation between this model and the one previously considered can be seen by

performing a conformal transformation on this theory to the Einstein frame gE
µν = f(Φ)gµν

with f(Φ) = 1 + 4α Φ2/M2
p such that the Lagrangian becomes,

L =
√−gE

(

− 1

2
M2

p RE − 3

4
M2

p

f ′(Φ)2

f(Φ)2
(∂EΦ)2 − VE(Φ)

)

(3.21)

where the Einstein-frame scalar potential is

VE(Φ) =
Φ4

(

1 + 4α
M2

p
Φ2
)2 . (3.22)

Further transforming to a canonical scalar field σ through the field transformation

σ =

√

3

2
MP ln

(

1 + 4α Φ2/M2
p

)

, (3.23)

the Einstein-frame scalar potential becomes

VE(σ) =
M4

P

16α2

[

1 − exp

(

−
√

2

3
σ/MP

)]2

. (3.24)

11The potential danger of these interactions, and the potential necessity for there to be a desert involving

no such virtual particles up to these large scales was already recognized in the original literature.
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The inflationary analysis therefore proceeds much as in Higgs inflation before, with

inflation occurring for fields Φ ≫ Mp/2
√

|α| or σ ≫
√

3
2MP , where the Einstein-frame

scalar potential is of order VEF ≃ λM4
p /(16ξ2) = M4

p /16ζ and the Hubble scale is H ≃√
λMp/ξ ≃ Mp/4

√
ζ. Again, successful generation of primordial density fluctuations re-

quires the combination ξ/
√

λ = 4 |α| = 4
√

ζ to be large, of order 104.

To see when ζ ≃ 108 begins interfering with the semiclassical approximation we again

use the power-counting arguments of previous sections. There are two equivalent ways to

determine the bounds on E for this theory, one can directly analyze the given lagrangian and

calculate the cut off scale for graviton-graviton scattering, gg → gg, using the dn = 4 inter-

actions of the lagrangian density. Repeating the arguments used for Higgs Inflation above

leads to a problem with unitarity once the scattering energies reach E ≃ Emax = Mp/ζ
1/3.

Alternatively, one can use the theory after the Hubbard-Stratonovich transformation in the

einstein frame and power-count. Note that one wishes to power count interactions with no

external Φ fields as in this case Φ is an auxiliary field and not a real field as in Higgsflation.

One can construct effective dn = 4 interaction operators and then power count directly as

before, again obtaining a cut off scale E ≃ Emax = Mp/ζ
1/3.

In either approach, we require that the scale M controlling all other powers of curvature

not written explicitly in eq. (3.19) to satisfy M ≪ Mp/ζ
1/3. But using the above expression

for the inflationary Hubble scale, H ≃ Mp/
√

ζ then shows that the ratio H/M must satisfy

H/M ≫ ζ−1/6 ≃ 1/20. Again inflation requires H/M to be close to a breakdown of the adi-

abatic approximation that underlies the understanding of eq. (3.19) as part of a low-energy

effective theory, making any inflationary conclusions drawn using it somewhat suspect.

4 Conclusions

Quantum corrections to the semi-classical approximation generally employed of the infla-

tion literature can be critical in determining the viability of particular inflationary scenar-

ios. Indeed, it is the fact that quantum effects are not completely negligible that underlies

the possibility of explaining primordial fluctuations in terms of quantum fluctuations of

the inflaton.

Although calculating quantum effects in non-renormalizable theories like gravity may

be unfamiliar, there is a well-defined framework within which it may be done. This frame-

work was developed and tested against experiment using non-renormalizable theories else-

where in physics, and relies on the observation that the semiclassical limit in such cases is

controlled by a low-energy approximation.

In this paper we have applied standard power-counting arguments for such theories

that allow one to easily quantify the domain of validity of the classical approximation

within any particular model. Indeed, it is because many slow-roll models lie well within

the classical limit that justifies the belief that inflation can reliably be predicted using the

standard classical analyses.

However the same may not be true for more exotic inflationary models, or for models of

dark energy for that matter, almost all of which are founded on a purely classical analysis.

We believe it behooves the proponent of any such a scenario to justify that validity of the

classical approximation, which should be viewed as one of the hurdles any serious proposal

must clear.

– 17 –
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As an application of these techniques, we have examined the domain of validity of

the Higgs-Inflaton scenario, and find that its semiclassical analysis is consistent only if

the scale, M , governing the low-energy approximation lies in the narrow range, Mp/ξ ≫
M ≫

√
λHMp/ξ, where ξ is the coefficient of the non-minimal Higgs-graviton interaction,

ξH†HR, and λH = m2
H/(2 v2

H) is the usual Standard Model Higgs quartic self-coupling.

Although it is a logical possibility that such a scale exists, we argue that it is extremely un-

stable to the existence of any small couplings between the Higgs and other heavy particles.

The situation is similar for curvature-squared inflationary models, which also must push

the adiabatic approximation that is essential to regarding such theories as well-behaved

low-energy effective descriptions of any sensible underlying microscopic dynamics.
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